Noise pollution, or sound pollution, is the propagation of noise or sound with potential harmful effects on humans and animals. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems.Senate Public Works Committee. Noise Pollution and Abatement Act of 1972. S. Rep. No. 1160, 92nd Congress. 2nd session Poor urban planning may give rise to noise disintegration or pollution. Side-by-side industrial and residential buildings can result in noise pollution in the residential areas. Some of the main sources of noise in residential areas include loud music, transportation (traffic, rail, airplanes, etc.), lawn care maintenance, construction, electrical generators, wind turbines, explosions, and people.
Documented problems associated with noise in urban environments go back as far as ancient Rome. Research suggests that noise pollution in the United States is the highest in low-income and racial minority neighborhoods, and noise pollution associated with household electricity generators is an emerging environmental degradation in many developing nations.
High noise levels can contribute to cardiovascular effects in humans and an increased incidence of coronary artery disease. In animals, noise can increase the risk of death by altering predator or prey detection and avoidance, interfere with reproduction and navigation, and contribute to permanent hearing loss.
Researchers use different weights to account for noise frequency with intensity, as humans do not perceive sound at the same loudness level. The most commonly used weighted levels are A-weighting, C-weighting, and Z-weighting. A-weighting mirrors the range of hearing, with frequencies of 20 Hz to 20,000 Hz. This gives more weight to higher frequencies and less weight to lower frequencies. C-weighting has been used to measure peak sound pressure or impulse noise, similar to loud short-lived noises from machinery in occupational settings. Z-weighting, also known as zero-weighting, represents noise levels without any frequency weights.
Understanding sound pressure levels is key to assessing Measurement of noise pollution. Several metrics describing noise exposure include:
Type 0 devices are not required to meet the same criteria expected of types 1 and 2 since scientists use these as laboratory reference standards. Type 1 (precision) instruments are to study the precision of capturing sound measurements, while type 2 instruments are for general field use. Type 1 devices acceptable by the standards have a margin of error of ±1.5 dB, while type 2 instruments meet a margin of error of ±2.3 dB.
The authors found that only 10 apps, all of which were on the App Store, met all acceptability criteria. Of these 10 apps, only 4 apps met accuracy criteria within 2 dB(A) from the reference standard. As a result of this study, they created the NIOSH Sound Level Meter App to increase accessibility and decrease costs of monitoring noise using crowdsourcing data with a tested and highly accurate application. The app is compliant with ANSI S1.4 and IEC 61672 requirements.
The app calculates the following measures: total run time, instantaneous sound level, A-weighted equivalent sound level (LAeq), maximum level (LAmax), C-weighted peak sound level, time-weighted average (TWA), dose, and projected dose. Dose and projected dose are based on sound level and duration of noise exposure in relation to the NIOSH recommended exposure limit of 85 dB(A) for an eight-hour work shift.
Using the phone's internal microphone (or an attached external microphone), the NIOSH Sound Level Meter measures instantaneous sound levels in real time and converts sound into electrical energy to calculate measurements in A-, C-, or Z-weighted decibels. App users are able to generate, save, and e-mail measurement reports. The NIOSH Sound Level Meter is currently only available on Apple iOS devices.
Across Europe, according to the European Environment Agency, it estimated 113 million people are affected by road traffic noise levels above 55 decibels, the threshold at which noise becomes harmful to human health by the WHO's definition.
Sound becomes unwanted when it either interferes with normal activities such as sleep or conversation, or disrupts or diminishes one's quality of life. Noise-induced hearing loss can be caused by prolonged exposure to noise levels above 85 A-weighted . A comparison of Maaban tribesmen, who were insignificantly exposed to transportation or industrial noise, to a typical U.S. population showed that chronic exposure to moderately high levels of environmental noise contributes to hearing loss.
Noise exposure in the workplace can also contribute to noise-induced hearing loss and other health issues. Occupational hearing loss is one of the most common work-related illnesses in the U.S. and worldwide.
It is less clear how humans adapt to noise subjectively. Tolerance for noise is frequently independent of decibel levels. Murray Schafer's soundscape research was groundbreaking in this regard. In his work, he makes compelling arguments about how humans relate to noise on a subjective level, and how such subjectivity is conditioned by culture. Schafer notes that sound is an expression of power in material culture. As such, fast cars or Harley Davidson motorcycles with aftermarket pipes tend to have louder engines not only for safety reasons, but for expressions of power by dominating the soundscape with a particular sound.
Other key research in this area can be seen in Fong's comparative analysis of soundscape differences between Bangkok, Thailand, and Los Angeles, California, US. Based on Schafer's research, Fong's study showed how soundscapes differ based on the level of urban development in the area. He found that cities in the periphery have different soundscapes than inner city areas. Fong's findings tie not only soundscape appreciation to subjective views of sound, but also demonstrates how different sounds of the soundscape are indicative of class differences in urban environments.
Noise pollution can have negative affects on adults and children on the Autism spectrum. Those with Autism Spectrum Disorder (ASD) can have hyperacusis, which is an abnormal sensitivity to sound. People with ASD who experience hyperacusis may have unpleasant emotions, such as fear and anxiety, and uncomfortable physical sensations in noisy environments with loud sounds. This can cause individuals with ASD to avoid environments with noise pollution, which in turn can result in isolation and negatively affect their quality of life. Sudden explosive noises typical of high-performance car exhausts and car alarms are types of noise pollution that can affect people with ASD.
While the elderly may have cardiac problems due to noise, according to the World Health Organization, children are especially vulnerable to noise, and the effects that noise has on children may be permanent. Noise poses a serious threat to a child's physical and psychological health, and may negatively interfere with a child's learning and behavior. Exposure to persistent noise pollution shows how important maintaining environmental health is in keeping and Old age healthy."The Effects of Noise on Health". hms.harvard.edu. Retrieved 2023-03-09.
living in urban environments are more likely to sing at night in places with high levels of noise pollution during the day, suggesting that they sing at night because it is quieter, and their message can propagate through the environment more clearly. The same study showed that daytime noise was a stronger predictor of nocturnal singing than night-time light pollution, to which the phenomenon often is attributed. Anthropogenic noise reduced the species richness of birds found in Neotropical urban parks.
become less faithful to their partners when exposed to traffic noise. This could alter a population's evolutionary trajectory by selecting traits, sapping resources normally devoted to other activities and thus leading to profound genetic and evolutionary consequences.
The ability to detect vibration through mechanosensory structures is most important in invertebrates and fish. Mammals, also, depend on pressure detector ears to perceive the noise around them. Therefore, it is suggested that marine invertebrates are likely perceiving the effects of noise differently than marine mammals. It is reported that invertebrates can detect a large range of sounds, but noise sensitivity varies substantially between each species. Generally, however, invertebrates depend on frequencies under 10 kHz. This is the frequency at which a great deal of ocean noise occurs.
Therefore, not only does anthropogenic noise often mask invertebrate communication, but it also negatively impacts other biological system functions through noise-induced stress. Another one of the leading causes of noise effects in invertebrates is because sound is used in multiple behavioral contexts by many groups. This includes regularly sound produced or perceived in the context of aggression or predator avoidance. Invertebrates also utilize sound to attract or locate mates, and often employ sound in the courtship process.
Proper selection of hermit crab shells strongly contributes to their ability to survive. Shells offer protection against predators, high salinity and desiccation. However, researchers determined that approach to shell, investigation of shell, and habitation of shell, occurred over a shorter time duration with anthropogenic noise as a factor. This indicated that assessment and decision-making processes of the hermit crab were both altered, even though hermit crabs are not known to evaluate shells using any auditory or mechanoreception mechanisms.
In another study that focused on Pagurus bernhardus and the blue mussel ( Mytilus edulis), physical behaviors exhibited a stress response to noise. When the hermit crab and mussel were exposed to different types of noise, significant variation in the valve gape occurred in the blue mussel. The hermit crab responded to the noise by lifting the shell off of the ground multiple times, then vacating the shell to examine it before returning inside. The results from the hermit crab trials were ambiguous with respect to causation; more studies must be conducted in order to determine whether the behavior of the hermit crab can be attributed to the noise produced.
Another study that demonstrates a stress response in invertebrates was conducted on the longfin inshore squid ( Doryteuthis pealeii). The squid was exposed to sounds of construction known as pile driving, which impacts the sea bed directly and produces intense substrate-borne and water-borne vibrations. The squid reacted by jetting, inking, pattern change and other startle responses. Since the responses recorded are similar to those identified when faced with a predator, it is implied that the squid initially viewed the sounds as a threat. However, it was also noted that the alarm responses decreased over a period of time, signifying that the squid had likely acclimated to the noise. Regardless, it is apparent that stress occurred in the squid, and although further investigation has not been pursued, researchers suspect that other implications exist that may alter the squid's survival habits.
An additional study examined the impact noise exposure had on the Indo-Pacific humpback dolphin ( Sousa chinensis). The dolphins were exposed to elevated noise levels due to construction in the Pearl River Estuary in China, specifically caused by the world's largest vibration hammer—the OCTA-KONG. The study suggested that while the dolphin's clicks were not affected, their whistles were because of susceptibility to auditory masking. The noise from the OCTA-KONG was found to have been detectable by the dolphins up to 3.5 km away from the original source, and while the noise was not found to be life-threatening it was indicated that prolonged exposure to this noise could be responsible for auditory damage.
For many marine organisms, sound is the primary means of learning about their environments. For example, many species of marine mammals and fish use sound as their primary means of navigating, communicating, and foraging. Anthropogenic noise can have a detrimental effect on animals, increasing the risk of death by changing the delicate balance in predator or prey detection and avoidance, and interfering with the use of the sounds in communication, especially in relation to reproduction, and in navigation and echolocation. These effects then may alter more interactions within a community through indirect ("domino") effects. Acoustic overexposure can lead to temporary or permanent loss of hearing.
Noise pollution may have caused the death of certain species of whales that beached whale themselves after being exposed to the loud sound of military sonar. (see also Marine mammals and sonar) Up until recently, most research on noise impacts has been focused on marine mammals, and to a lesser degree, fish. In the past few years, scientists have shifted to conducting studies on invertebrates and their responses to anthropogenic sounds in the marine environment. This research is essential, especially considering that invertebrates make up 75% of marine species, and thus compose a large percentage of ocean food webs. Of the studies that have been conducted, a sizable variety in families of invertebrates have been represented in the research. A variation in the complexity of their sensory systems exists, which allows scientists to study a range of characteristics and develop a better understanding of anthropogenic noise impacts on living organisms.
Even marine invertebrates, such as crabs ( Carcinus maenas), have been shown to be negatively affected by ship noise. Larger crabs were noted to be negatively affected more by the sounds than smaller crabs. Repeated exposure to the sounds did lead to acclimatization.
Underwater noise pollution due to human activities is also prevalent in the sea, and given that sound travels faster through water than through air, is a major source of disruption of marine ecosystems and does significant harm to sea life, including marine mammals, fish, and invertebrates. The once-calm sea environment is now noisy and chaotic due to ships, oil drilling, sonar equipment, and seismic testing. The principal anthropogenic noise sources come from merchant ships, naval sonar operations, underwater explosions (nuclear), and seismic exploration by oil and gas industries.
Cargo ships generate high levels of noise due to propellers and diesel engines. This noise pollution significantly raises the low-frequency ambient noise levels above those caused by wind. Animals such as whales that depend on sound for communication can be affected by this noise in various ways. Higher ambient noise levels also cause animals to vocalize more loudly, which is called the Lombard effect. Researchers have found that Humpback whale' song lengths were longer when low-frequency sonar was active nearby.
Underwater noise pollution is not only limited to oceans, and can occur in freshwater environments as well. Noise pollution has been detected in the Yangtze River, and has resulted in the endangerment of Yangtze finless porpoises. A study conducted on noise pollution in the Yangtze River suggested that the elevated levels of noise pollution altered the temporal hearing threshold of the finless porpoises and posed a significant threat to their survival.
Healthy coral reefs are naturally noisy, consisting of the sounds of breaking waves and tumbling rocks, as well as the sounds produced by fish and other organisms. Marine organisms use sound for purposes such as navigating, foraging, communicating, and reproductive activities. The sensitivity and range of hearing varies across different organisms within the coral reef ecosystem. Among coral reef fish, sound detection and generation can span from 1 Hz to 200 kHz, while their hearing abilities encompasses frequencies within the range of 100 Hz to 1 kHz. Several different types of anthropogenic noise are at the same frequencies as marine organisms in coral reefs use for navigation, communication, and other purposes, which disturbs the natural sound environment of the coral reefs.
Anthropogenic sources of noise are generated by a range of different human activities, such as shipping, oil and gas exploration and fishing. The principal cause of noise pollution on coral reefs is boat and ship activities. The use of smaller motorboats, for purposes as fishing or tourism within coral reef areas, and larger vessels, such as transporting goods, significantly amplifies disturbances to the natural marine soundscape. Noise from shipping and small boats is at the same frequency as sounds generated by marine organisms, and therefore acts as a disruptive element in the sound environment of coral reefs. Both longer-term and acute effects have been documented on coral reefs organisms after exposure to noise pollution.
Anthropogenic noise is essentially a persistent stressor on coral reefs and its inhabitants. Both temporary and permanent noise pollution has been found to induce changes in the distributional, physiological, and behavioral patterns of coral reef organisms. Some of the observed changes has been compromised hearing, increased heart rate in coral fish and a reduction in the number of reaching their settlement areas. Ultimately, the outcome of such changes results in reduced survival rates and altered patterns which potentially alters the entirety of the reef ecosystem.
The white damselfish, a coral reef fish, has been found to have a compromised anti-predator behavior as a result to ship noise. The distraction of anthropogenic noise is possibly distracting the fish, and thereby affecting the escape response and routine swimming of the coral fish. A study conducted on species of coral larvae, which are crucial for the expansion of coral reefs, discovered that the larvae oriented towards the sound of healthy reefs. The noise created by anthropogenic activities could mask this soundscape, hindering the larvae from swimming towards the reef. Noise pollution ultimately poses a threat to the behavioral patterns of several coral organisms.
In contrast, male grasshoppers exposed to loud traffic noise can create signals with a higher local frequency maximum of 7622 Hz. The higher frequencies are produced by the grasshoppers to prevent background noise from drowning out their signals. This information reveals that anthropogenic noise disturbs the acoustic signals produced by insects for communication. Similar processes of behavior perturbation, behavioral plasticity, and population level shifts in response to noise likely occur in sound-producing marine invertebrates, but more experimental research is needed.
Experiments have examined the behavior and physiology of the clam ( Ruditapes philippinarum), the decapod ( Nephrops norvegicus), and the brittlestar ( Amphiura filiformis) that are affected by sounds resembling shipping and building noises. The three invertebrates in the experiment were exposed to continuous broadband noise and impulsive broadband noise. The anthropogenic noise impeded the bioirrigation and burying behavior of Nephrops norvegicus. In addition, the decapod exhibited a reduction in movement. Ruditapes philippinarum experienced stress which caused a reduction in surface relocation. The anthropogenic noise caused the clams to close their valves and relocate to an area above the interface of the sediment-water. This response inhibits the clam from mixing the top layer of the sediment profile and hinders suspension feeding. Sound causes Amphiura filiformis to experience changes in physiological processes which results in irregularity of bioturbation behavior.
These invertebrates play an important role in transporting substances for benthic nutrient cycling. As a result, ecosystems are negatively impacted when species cannot perform natural behaviors in their environment. Locations with shipping lanes, dredging, or commercial harbors are known as continuous broadband sound. Pile-driving, and construction are sources that exhibit impulsive broadband noise. The different types of broadband noise have different effects on the varying species of invertebrates and how they behave in their environment.
Another study found that the valve closures in the Pacific oyster Magallana gigas was a behavioral response to varying degrees of acoustic amplitude levels and noise frequencies. Oysters perceive near-field sound vibrations by utilizing statocysts. In addition, they have superficial receptors that detect variations in water pressure. Sound pressure waves from shipping can be produced below 200 Hz. Pile driving generates noise between 20 and 1000 Hz. In addition, large explosions can create frequencies ranging from 10 to 200 Hz. M. gigas can detect these noise sources because their sensory system can detect sound in the 10 to < 1000 Hz range.
The anthropogenic noise produced by human activity has been shown to negatively impact oysters. Studies have revealed that wide and relaxed valves are indicative of healthy oysters. The oysters are stressed when they do not open their valves as frequently in response to environmental noise. This provides support that the oysters detect noise at low acoustic energy levels. While we generally understand that marine noise pollution influences charismatic megafauna like whales and dolphins, understanding how invertebrates like oysters perceive and respond to human generated sound can provide further insight about the effects of anthropogenic noise on the larger ecosystem. The aquatic ecosystems are known to use sound to navigate, find food, and protect themselves. In 2020, one of the worst mass stranding of whales occurred in Australia. Experts suggest that noise pollution plays a major role in the mass stranding of whales.
Noise pollution has also altered avian communities and diversity. Anthropogenic noises have a similar effect on bird population as seen in marine ecosystems, where noises reduce reproductive success; cannot detect predators due to interferences of anthropogenic noises, minimize nesting areas, increase stress response, and species abundances and richness declining. Certain avian species are more sensitive to noises compared to others, resulting in highly-sensitive birds migrating to less disturbed habitats. There has also been evidence of indirect positive effects of anthropogenic noises on avian populations. It was found that nesting bird predators, such as the western scrub-jay ( Aphelocoma californica), were uncommon in noisy environments (western scrub-jay are sensitive to noise). Therefore, reproductive success for nesting prey communities was higher due to the lack of predators. Noise pollution can alter the distribution and abundance of prey species, which can then impact predator populations.
Buy Quiet programs and initiatives have arisen in an effort to combat occupational noise exposures. These programs promote the purchase of quieter tools and equipment and encourage manufacturers to design quieter equipment.
Noise from roadways and other urban factors can be mitigated by urban planning and Roadway noise. Roadway noise can be reduced by the use of , limitation of vehicle speeds, alteration of roadway surface texture, limitation of heavy vehicles, use of traffic controls that smooth vehicle flow to reduce braking and acceleration, and tyre design.
An important factor in applying these strategies is a computer model for roadway noise, that is capable of addressing local topography, meteorology, traffic operations, and hypothetical mitigation. Costs of building-in mitigation can be modest, provided these solutions are sought in the planning stage of a roadway project.
Aircraft noise can be reduced by using quieter . Altering and time of day runway has benefited residents near airports.
Many conflicts over noise pollution are handled by negotiation between the emitter and the receiver. Escalation procedures vary by country, and may include action in conjunction with local authorities, in particular the police.
The Supreme Court of India had banned playing of music on loudspeakers after 10 p.m. In 2015, The National Green Tribunal directed authorities in Delhi to ensure strict adherence to guidelines on noise pollution, saying noise is more than just a nuisance as it can produce serious psychological stress. However, implementation of the law remains poor.
The National Institute for Occupational Safety and Health (NIOSH) at the Centers for Disease Control and Prevention (CDC) researches noise exposure in occupational settings and recommends a Recommended Exposure Limit (REL) for an 8-hour time-weighted average (TWA) or work shift of 85 dB(A) and for impulse noise (instant events such as bangs or crashes) of 140 dB(A). The agency published this recommendation along with its origin, noise measurement devices, hearing loss prevention programs, and research needs in 1972 (later revised June 1998) as an approach in preventing occupational noise-related hearing loss.
The Occupational Safety and Health Administration (OSHA) within the Department of Labor issues enforceable standards to protect workers from occupational noise hazards. The permissible exposure limit (PEL) for noise is a TWA of 90 dB(A) for an eight-hour work day. However, in manufacturing and service industries, if the TWA is greater than 85 dB(A), employers must implement a Hearing Conservation Program.
The Federal Aviation Administration (FAA) regulates aircraft noise by specifying the maximum noise level that individual civil aircraft can emit through requiring aircraft to meet certain noise certification standards. These standards designate changes in maximum noise level requirements by "stage" designation. The U.S. noise standards are defined in the Code of Federal Regulations (CFR) Title 14 Part 36 – Noise Standards: Aircraft Type and Airworthiness Certification (14 CFR Part 36). The FAA also pursues a program of aircraft noise control in cooperation with the aviation community. The FAA has set up a process to report for anyone who may be impacted by aircraft noise.
The Federal Highway Administration (FHWA) developed noise regulations to control Roadway noise as required by the Federal-Aid Highway Act of 1970. The regulations requires promulgation of traffic noise-level criteria for various land use activities, and describe procedures for the abatement of highway traffic noise and construction noise.
The Department of Housing and Urban Development (HUD) noise standards as described in 24 CFR part 51, Subpart B provides minimum national standards applicable to HUD programs to protect citizen against excessive noise in their communities and places of residence. For instance, all sites whose environmental or community noise exposure exceeds the day night average sound level (DNL) of 65 (dB) are considered noise-impacted areas, it defines "Normally Unacceptable" noise zones where community noise levels are between 65 and 75 dB, for such locations, noise abatement and noise attenuation features must be implemented. Locations where the DNL is above 75 dB are considered "Unacceptable" and require approval by the Assistant Secretary for Community Planning and Development.
The Department of Transportation's Bureau of Transportation Statistics has created a to provide access to comprehensive aircraft and road noise data on national and county levels. The map aims to assist city planners, elected officials, scholars, and residents to gain access to up-to-date aviation and Interstate highway noise information.
States and local governments typically have very specific statutes on building codes, urban planning, and roadway development. Noise laws and ordinances vary widely among municipalities and indeed do not even exist in some cities. An ordinance may contain a general prohibition against making noise that is a nuisance, or it may set out specific guidelines for the level of noise allowable at certain times of the day and for certain activities. Noise laws classify sound into three categories. First is ambient noise, which refers to sound pressure of all-encompassing noise associated with a given environment. The second is continuous noise, which could be steady or fluctuating, but continues for more than an hour. The third is cyclically varying noise, which could be steady or fluctuating, but occurs repetitively at reasonably uniform intervals of time.
New York City instituted the first comprehensive noise code in 1985. The Portland Noise Code includes potential fines of up to $5000 per infraction and is the basis for other major U.S. and Canadian city noise ordinances.
|
|